Solving multistage asset investment problems by the sample average approximation method

نویسندگان

  • Jörgen Blomvall
  • Alexander Shapiro
چکیده

The vast size of real world stochastic programming instances requires sampling to make them practically solvable. In this paper we extend the understanding of how sampling affects the solution quality of multistage stochastic programming problems. We present a new heuristic for determining good feasible solutions for a multistage decision problem. For power and log-utility functions we address the question of how tree structures, number of stages, number of outcomes and number of assets affect the solution quality. We also present a new method for evaluating the quality of first stage decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting some results on the sample complexity of multistage stochastic programs and some extensions

In this work we present explicit definitions for the sample complexity associated with the Sample Average Approximation (SAA) Method for instances and classes of multistage stochastic optimization problems. For such, we follow the same notion firstly considered in Kleywegt et al. (2001). We define the sample complexity for an arbitrary class of problems by considering its worst case behavior, a...

متن کامل

Revisiting some results on the complexity of multistage stochastic programs and some extensions

In this work we present explicit definitions for the sample complexity associated with the Sample Average Approximation (SAA) Method for instances and classes of multistage stochastic optimization problems. For such, we follow the same notion firstly considered in Kleywegt et al. (2001). We define the complexity for an arbitrary class of problems by considering its worst case behavior, as it is...

متن کامل

Inference of statistical bounds for multistage stochastic programming problems

We discuss in this paper statistical inference of sample average approximations of multistage stochastic programming problems. We show that any random sampling scheme provides a valid statistical lower bound for the optimal (minimum) value of the true problem. However, in order for such lower bound to be consistent one needs to employ the conditional sampling procedure. We also indicate that fi...

متن کامل

Statistical inference of multistage stochastic programming problems

We discuss in this paper statistical inference of sample average approximations of multistage stochastic programming problems. We show that any random sampling scheme provides a valid statistical lower bound for the optimal value of the true problem. However, in order for such lower bound to be consistent one needs to employ the conditional sampling procedure. We also indicate that fixing a fea...

متن کامل

A note on sample complexity of multistage stochastic programs

We derive a lower bound for the sample complexity of the Sample Average Approximation method for a certain class of multistage stochastic optimization problems. In previous works, upper bounds for such problems were derived. We show that the dependence of the lower bound with respect to the complexity parameters and the problem's data are comparable to the upper bound's estimates. Like previous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2006